

Lecture 1. Linear systems

Def A linear equation in variables x_1, x_2, \dots, x_n is an equation

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n = b$$

where a_1, a_2, \dots, a_n and b are constants.
"coefficients"

e.g. $2x - 3y = 4$, $7x_1 - \frac{3}{2}x_3 = \sqrt{2}$, $x_1 = 3x_2 - 5x_3 + 1$
 $\rightsquigarrow x_1 - 3x_2 + 5x_3 = 1$

Note Most equations are not linear.

e.g. $xy + z = 3$, $x_1^2 + 3x_2 - 2x_3 = 4$, $x - 3e^y = 1$

Def A linear system is a collection of linear equations

e.g.
$$\begin{cases} 3x_1 - 2x_2 + x_3 = 3 \\ 4x_1 + x_2 - 3x_3 = 0 \\ x_2 + 2x_3 = 1 \end{cases}$$

Note Given a linear system, we aim to answer the following questions:

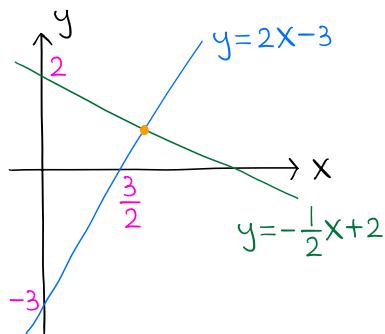
- Does it have a solution?
- If it has solutions, can we find them all?

Ex Determine whether each linear system has a solution.

$$(1) \begin{cases} x+2y=4 \\ 2x-y=3 \end{cases}$$

Sol The equation $y=mx+b$ represents the line on the xy -plane with slope m and y -intercept b .

$$\begin{cases} x+2y=4 \\ 2x-y=3 \end{cases} \Rightarrow \begin{cases} 2y = x+4 \\ -y = -2x+3 \end{cases} \Rightarrow \begin{cases} y = \frac{1}{2}x+2 \\ y = 2x-3 \end{cases}$$



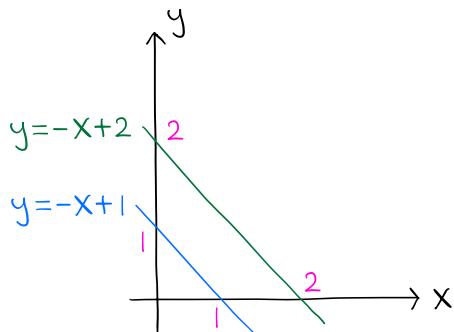
The lines are not parallel (different slopes)

\Rightarrow They intersect at a point

\Rightarrow The system has a unique solution

$$(2) \begin{cases} 2x+2y=2 \\ 3x+3y=6 \end{cases}$$

$$\begin{array}{l} \text{Sol} \end{array} \begin{cases} 2x+2y=2 \\ 3x+3y=6 \end{cases} \Rightarrow \begin{cases} 2y = -2x+2 \\ 3y = -3x+6 \end{cases} \Rightarrow \begin{cases} y = -x+1 \\ y = -x+2 \end{cases}$$



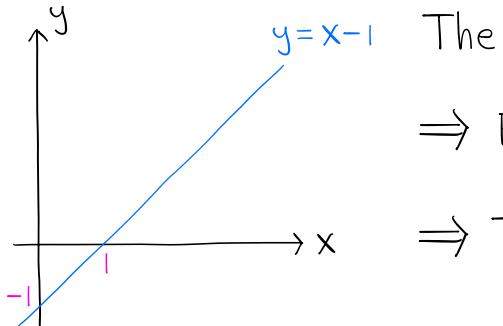
The lines are parallel (same slopes)

\Rightarrow They do not intersect

\Rightarrow The system has no solutions

$$(3) \begin{cases} x - y = 1 \\ 2x - 2y = 2 \end{cases}$$

$$\underline{\text{Sol}} \quad \begin{cases} x - y = 1 \\ 2x - 2y = 2 \end{cases} \Rightarrow \begin{cases} -y = -x + 1 \\ -2y = -2x + 2 \end{cases} \Rightarrow \begin{cases} y = x - 1 \\ y = x - 1 \end{cases}$$



The lines coincide

\Rightarrow Every point on the line yields a solution

\Rightarrow The system has infinitely many solutions

Note For a linear system of 2 equations in 2 variables, we have

3 possibilities for the number of its solutions.

- a unique solution (nonparallel lines)
- no solutions (parallel lines)
- infinitely many solutions (same lines)

We will learn in Lecture 3 that the same possibilities apply for all linear systems.

Ex Find the solution of each linear system.

$$(1) \begin{cases} 3x_1 + 2x_2 = 7 & (\text{Eq. 1}) \\ 3x_2 = 6 & (\text{Eq. 2}) \end{cases}$$

Sol (Eq. 2): $3x_2 = 6 \Rightarrow x_2 = 2$

(Eq. 1): $3x_1 + 2x_2 = 7 \Rightarrow 3x_1 + 2 \cdot 2 = 7 \Rightarrow 3x_1 = 3 \Rightarrow x_1 = 1$

Hence the solution is given by $x_1 = 1, x_2 = 2$

$$(2) \begin{cases} x_1 - 2x_2 = 1 & (\text{Eq. 1}) \\ 2x_1 + x_2 = 7 & (\text{Eq. 2}) \end{cases}$$

Sol We replace (Eq. 2) with a new equation which does not involve x_1 .

$$(\text{Eq. 2}) - 2(\text{Eq. 1}): (2x_1 + x_2) - 2(x_1 - 2x_2) = 7 - 2 \cdot 1$$

$$\Rightarrow 2x_1 + x_2 - 2x_1 + 4x_2 = 5 \quad (x_1 \text{ eliminated})$$

$$\Rightarrow 5x_2 = 5 \Rightarrow x_2 = 1$$

(Eq. 1): $x_1 - 2x_2 = 1 \Rightarrow x_1 - 2 \cdot 1 = 1 \Rightarrow x_1 = 3$

Hence the solution is given by $x_1 = 3, x_2 = 1$

$$(3) \begin{cases} 2x + 4y = 10 & (\text{Eq. 1}) \\ 3x - 5y = 4 & (\text{Eq. 2}) \end{cases}$$

Sol $\frac{1}{2}(\text{Eq. 1}) : \frac{1}{2}(2x + 4y) = \frac{1}{2} \cdot 10 \Rightarrow x + 2y = 5 \quad (\text{Eq. 1R})$

↑ coefficients 1

$$(\text{Eq. 2}) - 3(\text{Eq. 1R}) : (3x - 5y) - 3(x + 2y) = 4 - 3 \cdot 5$$

$$\Rightarrow 3x - 5y - 3x - 6y = -11 \quad (x \text{ eliminated})$$

$$\Rightarrow -11y = -11 \Rightarrow y = 1$$

(Eq. 1R): $x + 2y = 5 \Rightarrow x + 2 \cdot 1 = 5 \Rightarrow x = 3$

Hence the solution is given by $x = 3, y = 1$